Saturday, June 1, 2013

Mother Nature’s Vacuum: Better Than Man’s?



Given what we currently know and been capable so far, is Mother Nature’s vacuum more perfect than that currently been created by our electronic thermionic vacuum tube engineers and scientists? 

By: Ringo Bones 

Believe it or not, the Horsehead Nebula is 50,000 times more rarefied than the vacuum created inside the glass enclosure of a typical thermionic vacuum tube. Elsewhere in the Cosmos, the convection currents of the outer atmosphere of the red supergiant star Betelgeuse – in the constellation of Orion – is so rarefied that the atoms comprising the convection currents are more loosely packed than in the most perfect vacuum that scientists and electronic thermionic vacuum tube engineers had been able to create so far here on Earth. Given the disparity between what we have been able so far to create, will we be able to ever create our own vacuum so rarefied that it could rival that or even exceed that found surrounding the Horsehead Nebula or the outer atmosphere of the red supergiant star Betelgeuse? 

In reality, the thick cloud-like misty appearance of the Horsehead Nebula and other related celestial phenomena as seen from our Earth-based vantage point can be for all intents and purposes be considered an “optical illusion”. These “cosmic mists” in reality are more rarefied than the highest – or hardest - laboratory vacuum we can create so far here on Earth, but in many regions of the Milky Way galaxy, they are banked so deep, cloud upon cloud, that they completely hide the stars and galaxies which lie behind them. 

Part of the difficulty in creating a vacuum that rivals that or exceed that of the Horsehead Nebula or the outer atmosphere of the red supergiant star Betelgeuse was explained by Dr. Harvey C. Rentschler in the meeting of the American Physical Society – which was then published on the July 1943 issue of the Scientific American magazine. In his experiments conducted 8 years before 1943 had led him to conclude that atoms of gas – oxygen, hydrogen, or nitrogen – actually dissolve in the crystalline structure of some metals just as salt dissolves in water. These gas particles then “loosen” the electrons in this structure, causing them to be emitted from the metal more readily when heat is applied. And according to Dr. Rentschler, this should result in longer-lasting thermionic vacuum tubes and accomplish important savings in the size and number of electric batteries, generators and other apparatus needed to supply the filament power. So despite the use of clever chemical getters, creating an artificial vacuum here on Earth by scientists and electronic thermionic vacuum tube engineers that rival that or even exceed the vacuum surrounding the Horsehead Nebula, the outer atmosphere of the red supergiant star Betelgeuse, or other related celestial phenomena is – at present using current technology – still an almost quixotic quest.